光纤视场合成四维光谱成像仪

李立波^{1,2} 冯玉涛¹ 王 爽¹ 白清兰¹ 胡炳樑¹ (¹中国科学院西安光学精密机械研究所,陕西西安 710119 ²中国科学院大学,北京 100049</sup>)

摘要 作为现代遥感技术最重要的发展之一,光谱成像仪在军事、地质、海洋、大气探测等各个领域都有着广泛的应用。然而传统的色散或者干涉光谱成像仪由于需要多次曝光来扫描数据立方体,并不适合于场景快速变换的情况。四维(4D)光纤视场合成光谱成像仪,一种将特制光纤束置于望远镜的像面并成线性排列输出到光谱仪的技术,使得光谱成像仪能够通过单次曝光便获取目标的数据立方体,从而具有观测高速目标和瞬变现象的能力。搭 建了一套桌面实验系统,在可见光谱段获得 4.2 nm 的光谱分辨率,对彩色目标的成像效果良好。对光纤束排列误 差进行了分析,并给出了校准方法。

Four Dimensional Spectral Imager with Integral Field Fiber Bundle

Li Libo^{1,2} Feng Yutao¹ Wang Shuang¹ Bai Qinglan¹ Hu Bingliang^{1,2}

 $\int_{1}^{1} Xi'$ an Institute of optics and precision mechanics of CAS, Xi'an, Shaanxi 710119, China

² University of Chinese Academy of Sciences, Beijing 100049, China

Abstract As one of the most important development of remote sensing, spectral imager has been widely used in military, geognosy, ocean and atmosphere measurement. However, the classic spectral imager, neither dispersive spectral imager nor Fourier transform spectrometer, which has to take multiple exposures to scan spectral data cube, do not suit with the situation that the scene change too fast. Four-dimensional (4D) fiber reformatting spectral imager, in which a special optical fiber bundle sits in the image plane of the telescope and has linearly aligned at the entrance to the spectrograph, can capture three-dimensional (3D) spectral data cube in a single exposure. So it enable to measure fast moving target or fast changing scene. A breadboard system in the laboratory is described, the average spectral resolution of the system is 4.2 nm in visible range, and a good imaging result of color target is got. The fiber bundle errors are analyzed, and the calibrating method is given.

Key words spectroscopy; spectral imager; fiber bundle; fast moving target; fast changing scene OCIS codes 110.4234; 120.6200; 300.6550

1 引 言

光谱成像仪采集得到的数据立方体包括两维空间信息和一维光谱信息,而探测器最多只能采集二 维数据,另外一维数据需要扫描即多次曝光来获得, 因而需要较长的时间才能获取完整的数据立方 体^[1-4]。随着光谱成像仪应用的拓展,适用于探测 快速变化目标的各种光谱成像仪被提了出来,通常 称之为快照式光谱成像仪(SIS),即可以同时获取两 维空间、一维光谱,如果连续曝光则可得到随时间变换的信息,因此也被称为四维光谱成像仪(4DIS),以区别需要扫描的传统光谱成像仪^[5]。

不同于传统的色散型或干涉型光谱成像仪,4D 光谱成像仪单次曝光即可完成光谱数据立方体的采 集,如光纤视场合成光谱成像仪(FRSI)^[6]、计算层析 型光谱成像仪(CTIS)^[7]和编码孔径快照光谱成像仪 (CASSI)^[8]。它们的共同特点是利用特殊的光学器

收稿日期: 2013-12-23; 收到修改稿日期: 2014-01-08

基金项目: 国家自然科学基金(41005019)

作者简介:李立波(1984—),男,博士研究生,工程师,主要从事光谱成像技术方面的研究。E-mail: lilibo@opt.ac.cn 导师简介:胡炳樑(1973—),男,博士,研究员,主要从事光谱成像技术方面的研究。E-mail: hbl@opt.ac.cn

件对空间光谱信息进行编码,将多维数据变换投影到 二维的面阵探测器上,然后对采集数据解算复原,得 到光谱数据立方体。相对于 CTIS 和 CASSI,由于 FRSI 只对空间信息进行了重排,其解算复原过程要 简单得多,在实时性方面有者更大的优势。

光纤视场合成光谱成像仪利用变形光纤束作为 像分割器件,将二维场景分割排列成一维,输出到色 散光谱仪,在像面处得到的就是二维空间的光谱图。 光纤束作为像分割器件早在 1958 年就由 Kapany 提出,但受到技术的限制,始终无法制造出达到工程 使用要求的光纤束产品,直到上世纪八九十年代,随 着制造水平的提高,该项技术才逐渐得到应用,并在 八十年代初应用在了天文观测领域。1982年,英澳 天文台的 Gray 等研制了光纤视场合成光谱成像仪的 原型样机,使用了 100 根纤芯直径为 200 µm 的石英 光纤,与3.9 m 口径的英澳望远镜对接,可实现17"× 22"的视场区域覆盖。1988年,法国巴黎-默东天文台 的 Vanderriest 等^[9] 研制了光纤线性转换成像 (SILFID)光谱仪,用在 CFH 望远镜上,所使用的光纤 的纤芯直径为 100 μm,光纤束所包含的光纤数量达 到 397 根。1998 年,德国 Tecza 等^[10] 研制了红外光 纤视场成像(SPIFFI)光谱仪,所使用的光纤束包含 1024 根石英光纤,纤芯直径减小到 50 µm,工作波段 也扩展到 1100~2500 nm 的近红外,可与 4~8 m 的 天文望远镜进行对接。2006年美国 OKSI 公司的 Gat 等[11] 研制了 4DIS,包括 400~1000 nm 的可见 近红外波段和 MWIR 的中波红外波段,该设备用于 火箭发动机尾焰、气体电离发光等瞬变现象的观测。

从以上的发展可以看出,光纤视场合成光谱成 像仪对于弱目标和瞬变现象的凝视观测中有着重要 的应用,并且随着技术水平的发展,光纤束的纤芯直 径不断减小,集成度越来越高,其工作波段也由最初 的可见光扩展到红外波段。本文介绍了该类型光谱 成像仪的工作原理,在实验室搭建了桌面系统,对光 纤束的误差进行了分析。

2 技术原理

光纤具有良好的透光性,一根光纤可传递一个 像素,如果将大量光纤以一定方式排列、胶合或熔压 成光纤束,经端面研磨、抛光即可获得具有各种用途 的光纤元件。另外光纤比较柔软、可弯曲,将光纤的 两个端面排列成不同形状,则可以做成光纤转换器, 达到传光或者传像的目的^[12-13]。如果将光纤一端 排列成面阵,另一端排列成线阵,那么就可以将二维 图像转换成一维进行扫描,从而使很多问题得到简 化。4D光纤视场合成光谱成像仪正是利用了这种 特殊的传像光纤束,实现了二维视场的分割重排,解 决了三维数据同时采集的难题。

4D光纤视场合成光谱成像仪的工作原理如 图 1所示,光纤束矩形端面位于前置望远镜的像面 处,线形端面位于色散光谱仪的入射端,相当于光谱 仪的入射狭缝,则在光谱仪的像面处得到的就是垂 直狭缝方向色散开来的空间光谱信息,然后按照光 纤束的变换关系再将采集数据重排,可得到目标的 光谱数据立方体。图中的光栅是色散元件,也可以 使用棱镜,另外中继镜组是为匹配光谱仪和光纤束 的视场及相对孔径,并不是必须的部件。显然,目标 场景的数据立方体只需要单次曝光即能获取,具有 时间分辨率高、光谱分辨率高、空间分辨率高的特 点,对于高速目标和瞬变现象能很好的观测。

图 1 4D 光纤视场合成光谱成像仪 Fig. 1 Four dimensional (4D) fiber-reformatting imaging spectrometry

3 桌面实验系统

视场合成光纤束是系统的关键器件,由于光纤 束为异型排列,无法采用传统的集束工艺制作,只能 手工进行排列,制作效率低、且容易发生光纤断裂, 这也是目前制约该技术发展的重要因素。定制光纤 束是由纤芯直径为 40 μ m 的石英光纤排列而成,在 可见光到近红外波段具有良好的透射率。光纤的入 射端为 32 pixel×32 pixel 的面端,出射端顺序展开 成 1024 pixel×1 pixel 的线端,光纤总长度 0.58 m, 排列间距为 52 μ m,外部采用金属包裹以保护光纤, 并使其可以进行一定程度的弯曲。图 2(a)给出了 光纤束的实物图,图 2(b)和(c)分别是面端和线端 的显微图像。

根据工作原理,搭建了桌面实验系统如图3所

图 2 视场合成光纤束。(a)光纤束;(b)面端 图像;(c)线端图像

Fig. 2 Integral field fiber bundle. (a) Fiber bundle;(b) image of square end; (c) image of linear end

示。前置镜使用 200 mm 的照相机镜头用于将目标 成像于光纤束的入射面端,出射线端则位于放大率 为 0.5×的远心中继镜组的物面上,并使中继镜组 的像面与准直镜物面重合,中继镜组将线视场缩小 了一倍,从而更好的匹配探测器。实验中光纤束的 端面垂直于光轴,以提高耦合效率,减少能量损失。 色散元件采用 Newport 公司的 50 l/mm 的闪耀光 栅,闪耀角为 0.86°,在 600 nm 的峰值衍射效率为 75%,在工作波段 450~850 nm 平均衍射效率约为 60%,具有 相 当高 的 能 量 利 用 率。探 测 器 为 Vieworks 公司的 VH-4MG,其大小为 7.4 μ m,面阵大 小为 2048 pixel×2048 pixel,光纤束的一个端元成像 于像面处约占 3 pixel,这样 2048 pixel 最大可采集 682 个光纤束端元,考虑预留像元以确定排列起始位 置,最终可采集的面阵大小为 32 pixel×21 pixel。

图 3 实验室桌面系统

Fig. 3 Breadboard system in the laboratory

光栅具有很高的色散本领,光谱分辨率主要受限于光纤直径和探测器像素尺寸的限制,实验中光 纤直径大于探测器像素尺寸为光谱分辨率决定因 素。理论的光谱分辨率约为 3.68 nm。探测器的尺 寸要小于光纤的纤芯直径,因此光谱采样宽度小于 系统的光谱分辨率,实验中的光谱采样宽度为 1.6 nm。空间分辨率由前置镜焦距和光纤端元尺 寸决定,更换长焦距的前置镜可以获得更高的分辨 率,反之使用短焦距的前置镜分辨率将降低,对于 200 mm 焦距的前置镜其理论分辨率为 0.9'。桌面 系统的指标参数如表 1 所示。

表 1 桌面系统指标参数 Table 1 Specification of breadboard system

Parameter	Value		
Spectral range /nm	$450 \sim 850$		
Spectral resolution /nm	3.68		
Spectralwidth sampling /nm	1.6		
Pixel	31×21		

4 成像实验及结果

在采集数据前,先使用高压汞灯作为光源进行 光谱的定标,高压汞灯在 200~700 nm 的波长范围 内具有分布均匀的线光谱,适用于各类紫外到可见 光波段光谱仪器的波长校准测试。利用已知谱线波 长,和探测器响应的局部极值位置,选择最小二乘拟 合出关于波长 λ 关于位置 *x* 的二次方程,完成光谱 定标^[14]。

实验数据与定标结果如表 2 所示,表中给出了 像素位置数据、特征波长、拟合波长、拟合波长偏差。 由于光谱分辨率不够,高压汞灯两条较为接近的谱 线 576.96 nm 和 579.07 nm 合为一条谱线,因此以 两谱线的平均波长 578.02 nm 做为标定波长。拟 合后的波长最大偏差为 0.35 nm。

由于谱线轮廓的差异、光学系统的像差,光源的 不稳定性和仪器装调等方面的误差,光谱仪器的实

图 4 定标后的高压汞灯光谱曲线 Fig. 4 Spectrum of high-pressure mercury lamp after calibrated

际光谱分辨力总比理论计算结果差。对实测高压汞 灯谱线进行线形插值,测量得到 546.1 nm 谱线的 半峰全宽为 4.2 nm,略大于 3.68 nm 的理论值。

表 2 高压汞灯光谱定标谱线

Table 2 Spectral calibration by high-pressure mercury lamp

Sampling point	1	2	3	4	5	6
Pixel position	50	83	102	129	158	169
Theoretical wavelength /nm	491.6	546.07	578.02*	623.44	671.62	690.72
Fitted wavelength /nm	491.52	546.29	577.97	623.17	671.97	690.54
Error /nm	-0.07	0.22	-0.05	-0.27	0.35	-0.18

* The emission spectrum of high-pressure mercury lamp at 576.96 nm and 579.07 nm is too close to be apart, only average wavelength is considered.

对复杂彩色目标图 5(a)成像,结果如图 5(b)所示,该图是由 658.5,566.3,483.3 nm 三个谱段的数据做为 RGB 三原色合成的彩色图,与人眼视觉感官色彩基本一致,但是图像在 X 方向存在明显错位

和几何变形。图 6 中则给出了像素坐标为(13,6)、 (24,6),(29,6),(27,13)四个点的光谱曲线,分别对 应红色、绿色、黄色和蓝绿色四种颜色,曲线很好的 反映了不同颜色的光谱区别。

图 5 目标及成像结果。(a)彩色目标;(b)实验结果 Fig. 5 Experiment result of color target. (a) Color target;(b) experiment result

图 6 不同位置的光谱曲线 Fig. 6 Spectrum of different pixel

5 光纤束排列误差

对于光纤视场合成光谱成像仪,由于使用了光 纤束这种空间采样器件,给系统带来了新的问题:光 纤排列存在位置和倾斜两种误差,这两种误差对成 像性能都有较大的影响,需要在制造过程中需要特别注意。

其中面端排列的位置误差影响空间采样位置, 使图像错位,而线端排列的位置误差,除了使探测器 采集得到的谱线"疏密"不同,还会引起光谱位置的 变化,因此每根光纤的光谱曲线都需要进行光谱标 定,以校准光谱,然后每根光纤的都需要空间位置的 标定,对数据进行重采样,消除排列位置误差对数据 采集的影响。对于空间位置的标定,一种可行的方 法是选择小于光纤纤芯直径的点光源作为目标,精 确移动点光源,记录其位置和探测器的响应,建立两 者空间变换关系,完成空间图像的校准。另外纤芯 之间有包裹层和胶层存在一定的间隙,探测器采集 得到的图像也会存在间隙,通过插值处理可以提高 图像的可视性,提高校准精度。Barden 等^[10]给出一 种插值处理方法,对于数据的后处理有很大的借鉴 意义。

倾斜误差是由于光纤光轴与端面存在夹角,导

致光束的出射角度不同,影响了透镜组与光纤的耦 合效率,不同光纤出射光的亮度存在较大差异,适当 增大透镜组的数值孔径或者采用微透镜进行耦合, 有助于减少倾斜误差造成的影响,然后通过辐射度 的标定获得均一的响应输出。

图 7 光纤束排列误差。(a)位置误差;(b)倾斜误差 Fig. 7 Main error of fiber bundle. (a) Alignment error; (b) tilt error

6 结 论

光纤视场合成光谱成像仪没有运动部件,时间 分辨率高,光谱分辨率高、数据处理简单,特别适合 高速物体和瞬变现象的观测,如高速运动的导弹、飞 机、人造卫星,记录发动机尾焰、物体爆炸等现象,在 军事和空间目标监视领域有着广泛的应用前景。搭 建了桌面系统,实验中所使用的光纤束,纤芯直径和 集成度都达到了国际先进的水平,系统的性能指标 优异,其光谱范围为 450~850 nm,成像分辨率 32 pixel×21 pixel,光谱分辨率达到了 4.2 nm,定 标后光谱误差最大 0.35 nm。实验中对复杂彩色目 标的成像效果良好,对光纤束排列误差的主要影响 进行讨论,并给出了校准方法。

参考文献

1 Xiangli Bin, Zhao Baochang, Xue Mingqiu. Spatially modulated imaging interferometry [J]. Acta Optica Sinica, 1998, 18(1): 18-22.

相里斌,赵葆常,薛鸣球.空间调制干涉成像光谱技术[J].光学 学报,1998,18(1):18-22.

2 Xue Qingsheng, Wang Shurong, Li Futian. Study on limb imaging spectrometer with grating dispersion [J]. Acta Optica Sinica, 2010, 30(5): 1517-1521. 薛庆生, 王淑荣, 李福田. 光栅色散临边成像光谱仪的研究[J]. 光学学报, 2010, 30(5): 1517-1521. 3 Wang Hong, Liu Xuebin, Feng Yutao, *et al.*. A new reduction technique for thermospheric wind and temperature measurement with Fabry-Perot interferometer [J]. Acta Optica Sinica, 2013, 33(11): 1130003.

王 宏,刘学斌,冯玉涛,等. 基于法布里珀罗干涉仪反演大气 风速和温度的简化算法[J]. 光学学报,2013,33(11):1130003.

- 4 Li Zhanfeng, Wang Shurong, Huang Yu, et al.. Research on high-accuracy in-flight spectral calibration of the solar backscattered ultraviolet spectroradiometer [J]. Acta Optica Sinica, 2013, 33(2): 0228002. 李占峰, 王淑荣, 黄 煜,等. 紫外臭氧垂直探测仪高精度在轨 光谱定标方法研究[J]. 光学学报, 2013, 33(2): 0228002.
- 5 Nathan Hagen, Robert T Kester, Liang Gao, *et al.*. Snapshot advantage: a review of the light collection improvement for parallel high-dimensional measurement systems [J]. Opt Eng, 2012, 51(11): 111702.
- 6 D J Mansur, J R Dupuis, R Vaillancourt. Fiber optic snapshot hyperspectral imager [C]. SPIE, 2012, 8360; 836007.
- 7 M Descour, E Dereniak. Computed-tomography imaging spectrometer: experimental calibration and reconstruction results
 [J]. Appl Opt, 1995, 34(22): 4817-4826.
- 8 M E Gehm, R John, D J Brady, *et al.*. Single-shot compressive spectral imaging with a dual-disperser architecture [J]. Opt Express, 2007, 15(21): 14013-14027.
- 9 C Vanderriest, J P Lemonnier. Instrumentation in astronomy [C]. Proceedings of IXth Santa Cruz Workshop, 1988, 304.
- 10 M Tecza, N Thatte, et al.. SPIFFI: a high-resolution nearinfrared imaging spectrometer [C]. SPIE, 1998, 3354: 394-403.
- 11 Nahum Gat, Gordon Scriven, John Garman, *et al.*. Devolopment of four-dimensional imaging spectrometers (4D-IS) [C]. SPIE, 2006, 6302; 63020M.
- 12 Zhu Xiang, Fang Zhonghua, Sun Shengli. Fiber bundle coupling technique in optics system [J]. Infrared Technology, 2006, 28 (5): 257-260.

朱 翔,方中华,孙胜利.光纤传像系统中的耦合技术研究[J]. 红外技术,2006,28(5):257-260.

13 Cheng Xin. The Study on Optical System of Imaging Fiber-Optic Spectrometer With Wide Field-of View [D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics of CAS, 2012. 66-69.

程 欣.大视场光纤成像光谱仪光学系统研究[D].长春:中国 科学院长春光学精密机械与物理研究所,2012.66-69.

14 Wu Yan, Tang Yi, Ni Guoqiang, et al.. FUV imaging spectrometer based on crossed Czerny-Turner structure [J]. Opto-Electronic Engineering, 2009, 36(3): 125-129.

吴 雁,唐 义,倪国强,等.一种交叉的切尔尼一特纳型远紫 外成像光谱仪[J].光电工程,2009,36(3):125-129.

栏目编辑:张浩佳